Organisch-Chemisches Institut der Universität Wien

## Über den Zusammenhang von Kovalenzradien und Elektronegativitäten\*

Von

## GERHARD DERFLINGER \*\* und OSKAR E. POLANSKY

Zur Berechnung der Kovalenzradien wird eine neue empirische Formel (2) aufgestellt, in welche die Elektronegativitäten und ein nur von der Hauptquantenzahl der Valenzelektronen abhängiger Parameter, den wir Schalenkonstante genannt haben, eingehen. Diese Schalenkonstanten hängen einerseits mit den Elektronendichteverteilungen der Slater-Atom-Orbitale und andrerseits mit den Konstanten  $b_{ij}$  der von Badger [3] gefundenen empirischen Formel (6) für die Kraftkonstanten einfach zusammen. Ferner wird unter Zugrundelegung der Gl. (1) von Schomaker und Stevenson [10] nach der Methode der kleinsten Quadrate ein neues System von Kovalenzradien berechnet.

For the calculation of the covalent radii a new empirical function (2) is given containing the electronegativities and a parameter (called shell constant here), which depends only on the principal quantum number of the valence electrons. This parameter is simply related to the charge cloud density of the Slater atomic orbitals on the one hand and on the other hand to the bond force constants  $b_{ij}$  of Badger's [3] empirical function (6). Furthermore a new system of covalent radii is calculated taking as basis the function (1) of Schomaker and Stevenson [10] and using the method of least squares.

Une nouvelle formule empirique (2) est donnée pour le calcul des rayons covalents, contenant les électronégativités et un paramètre (nommé constante de couche) qui ne dépend que du nombre quantique principal des électrons de valence. Cette constante de couche est liée à la distribution de la densité électronique dans les orbitales atomiques de Slater, et aussi aux  $b_{ij}$  de la formule empirique (6) de Badger [3] pour les constantes de force. En outre, un système nouveau de rayons covalents suivant l'équation (1) de Schomaker et Stevenson [10] est calculé par la méthode des moindres carrés.

In der vorhergehenden Arbeit [8] haben wir die empirische Formel von Schomaker und Stevenson [10] zur Berechnung von Bindungslängen

$$d_{AB} = r_A + r_B - 0.09 | \chi_A - \chi_B |$$
 (1)

theoretisch begründet.  $d_{AB}$  ist die Länge der zwischen den Atomen A und B bestehenden Bindung,  $r_A$  und  $r_B$  bedeuten die Kovalenzradien,  $\chi_A$  und  $\chi_B$  die Elektronegativitäten. Wir interessierten uns nun auch für den Zusammenhang der Kovalenzradien mit den Elektronegativitäten. In Fig. 1 sind die Kovalenzradien r für Einfachbindung gegen die Elektronegativitäten  $\chi$  aufgetragen. Man sieht, daß für jede Reihe im Periodensystem die Punkte auf je einem Kurvenzug liegen. Die

<sup>\*</sup> Auszugsweise bei der Jahrestagung 1962 des Vereines Österreichischer Chemiker am 12. Oktober 1962 in Wien vorgetragen. Vgl.: Österr. Chem.-Ztg. 63, 317 (1962); Angew. Chemie 75, 103 (1963).

<sup>\*\*</sup> Derzeit am Institut für Statistik der Universität Wien.

Kovalenzradien fallen mit wachsender Elektronegativität, dieser Abfall wird jedoch immer geringer. Die Kurve für die Elemente der ersten Achterperiode wird bei höheren Elektronegativitäten nahezu horizontal, senkt sich jedoch wieder etwas beim Fluor. Dieser Kurvenlauf legt es nahe, die Funktion durch eine kubische Parabel mit dem Wendepunkt in der Gegend von  $\chi=3$  bis 3,5 und mit horizontaler Wendetangente anzunähern. Solch eine Funktion ist von der Form:

$$r = \rho + a (b - \chi)^3. \tag{2}$$

Nach der Methode der kleinsten Quadrate findet man, daß für die erste Achterperiode die Gleichung

 $r = 0.74 + 0.055 (3.2 - \chi)^3$  (3) den Funktionsverlauf am besten wiedergibt. Überraschenderweise braucht man für die übrigen Reihen des Periodensystems die Kurve nur ein passendes Stück senkrecht nach oben zu verschieben, um sie mit den entsprechenden Punkten zur Deckung zu bringen. Die Werte von a und b bleiben somit für alle Reihen des Periodensystems konstant und betragen a = 0.055 Å bzw. b = 3.2, während sich der Wert von  $\varrho$  von Reihe zu Reihe ändert. Da  $\rho$  nun für diejenigen Atome, die die gleiche Valenzschale besitzen, konstant bleibt, haben wir o als Schalenkonstante bezeichnet. Ihre verschiedenen Werte sind in Fig. 1 angegeben. Entsprechend Gl. (2) können die Schalenkonstanten als Kovalenzradien

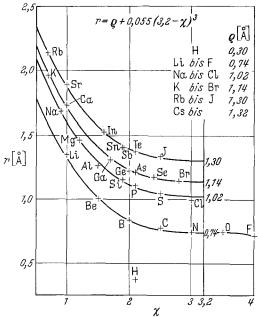



Fig. 1. Abhängigkeit des Kovalenzradius r von der Elektronegativität  $\chi$ 

der hypothetischen Elemente der Elektronegativität 3,2 aufgefaßt werden. In Tab. 1 sind die nach unserer Formel (2) berechneten Kovalenzradien  $r_{ber}$  empirischen Werten  $r_{emp}$  gegenübergestellt, die meist als halbe Länge der entsprechenden homonuclearen Bindung erhalten wurden. Wenn entsprechende Meßdaten nicht vorlagen, so wurden vor allem die Längen von Bindungen des betreffenden Elementes mit Wasserstoff oder Halogenen zur Berechnung des Kovalenzradius  $r_{emp}$  herangezogen, wobei selbstverständlich gemäß Gl. (1) die Elektronegativitätskorrektur der Bindungslänge berücksichtigt wurde.

Außerdem haben wir aus den 221 in Tab. 2 angeführten Bindungslängen nach der Methode der kleinsten Quadrate die optimalen Kovalenzradien für 32 Elemente berechnet, die ebenfalls in Tab. 1 angegeben werden und mit  $r_{Gau\beta}$  bezeichnet sind.

Jede der Bindungslängen liefert gemäß Gl. (1) eine Fehlergleichung zwischen zwei Kovalenzradien:

$$r_i + r_j = d_{ij} + 0.09 \mid \chi_i - \chi_j \mid$$
 (4)

Aus den 221 Fehlergleichungen erhält man in bekannter Weise die 32 Normalgleichungen für die Kovalenzradien der 32 in Betracht gezogenen Elemente und es muß schließlich ein lineares

Gleichungssystem von 32 Gleichungen mit 32 Unbekannten gelöst werden. Diese Rechnungen wurden an der elektronischen Rechenanlage des Institutes für Statistik der Universität Wien durchgeführt.

In Tab. 1 sind ferner auch die verwendeten Elektronegativitäten angegeben. In wenigen Fällen haben wir Elektronegativitätswerte verwendet, die etwas von

|                                                            |                                                                                                                                                                                     |                                                        | <del>,</del>                                           |                                                        |                                                        | <del>,</del>                                           |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| $egin{array}{c} H\ 2,1 \ 0,370 \ 0,37 \ 0,354 \end{array}$ |                                                                                                                                                                                     |                                                        |                                                        |                                                        |                                                        |                                                        |
| Li1,0 $1,326$ $1,34$ $1,337$                               | Be 1,5<br>1,010<br>1,03<br>1,043                                                                                                                                                    | $B\ 2.0\ 0.835\ 0.83\ 0.825$                           | C 2,5 0,759 0,77 0,780                                 | $N \ 3,0 \ 0,740 \ 0,74 \ 0,745$                       | $O\ 3,5\ 0,739\ 0,74\ 0,728$                           | F 4,0<br>0,712<br>0,71<br>0,702                        |
| $Na\ 0,9 \ 1,689 \ 1,54 \ 1,672$                           | $Mg\ 1.2$ $1.460$ $1.44$ $1.426$                                                                                                                                                    | $Al\ 1,5 \ 1,290 \ 1,26 \ 1,273$                       | Si* 1,9<br>1,141<br>1,16<br>1,125                      | P 2,1<br>1,093<br>1,10<br>1,090                        | S 2,5<br>1,039<br>1,04<br>1,031                        | Cl 3,0<br>1,020<br>0,99<br>1,018                       |
| $K \star 0.7$ $1,999$ $1,96$ $1,984$                       | $Ca\ 1,0 \ 1,726 \ 1,73 \ 1,747$                                                                                                                                                    | Ga 1,7<br>1,326<br>1,3<br>1,287                        | Ge* 1,9<br>1,261<br>1,22<br>1,208                      | As* 2,1<br>1,213<br>1,21<br>1,217                      | Se 2,4<br>1,168<br>1,17<br>1,167                       | Br 2,8<br>1,144<br>1,14<br>1,145                       |
| Rb* 0,7<br>2,159<br>2,14<br>2,100                          | Sr 1,0<br>1,886<br>1,88<br>1,891                                                                                                                                                    | In 1,6<br>1,525<br>1,52<br>1,527                       | Sn* 1,9<br>1,421<br>1,40<br>1,404                      | Sb* 1,9<br>1,421<br>1,40<br>1,401                      | $Te\ 2,1 \ 1,373 \ 1,37 \ 1,388$                       | J~2,5 $1,319$ $1,33$ $1,344$                           |
| Cs * 0,6 2,287 2,26 2,241                                  | Ba 0,9<br>1,989<br>1,97<br>1,984                                                                                                                                                    | Tl 1,5 1,590 1,59 1,586                                | Pb 1,6<br>1,544<br>1,56                                |                                                        |                                                        |                                                        |
|                                                            | $0.370$ $0.37$ $0.354$ $Li$ 1,0 $1.326$ $1.34$ $1.337$ $Na$ 0,9 $1.689$ $1.54$ $1.672$ $K^*$ 0,7 $1.999$ $1.96$ $1.984$ $Rb^*$ 0,7 $2.159$ $2.14$ $2.100$ $Cs^*$ 0,6 $2.287$ $2.26$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Tabelle 1. Kovalenzradien (in Ångström)

den Paulingschen Werten abweichen. So rechnen wir bei den Alkalimetallen K, Rb und Cs mit Elektronegativitäten, die ein Zehntel kleiner sind als die Paulingschen. Wie man in Fig. 1 sieht, verläuft in der Gegend dieser kleinen Elektronegativitäten die Kurve für die Kovalenzradien sehon recht steil, die Funktion ist also bereits gegen kleine Elektronegativitätsänderungen recht empfindlich. Für Kalium erhält man beispielsweise mit der Elektronegativität 0,8 einen zu kleinen Kovalenzradius, setzt man 0,7 in die Formel (2) ein, so bekommt man einen

 $r_{ber} = \varrho + 0.055 (3.2 - \chi)^3$ .

 $r_{emp}$  .... empirischer Kovalenzradius, im allgemeinen gleich  $1/2 d_{AA}$ .

 $r_{{\it Gau}\beta}$  . . . beste Kovalenzradien, aus 221 Bindungslängen nach der Methode der kleinsten Quadrate berechnet.

<sup>\*</sup> Bei diesen Elementen wurden Elektronegativitäten verwendet, die von den Werten Paulings abweichen.

Tabelle 2. Bindungslängen, die zur Berechnung der optimalen Kovalenzradien  $r_{Gau\beta}$  verwendet wurden [12]

| Bindung                  | in                                | d (in Å)       | Bindung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in                                    | d (in Å)       |  |
|--------------------------|-----------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------|--|
| Li - Li                  | $Li_2$                            | 2,6725         | Al - Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AlBr                                  | 2,295          |  |
| Li~-H                    | LiH                               | 1,59535        | Al - Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $Al_2Br_6$                            | 2,21           |  |
| Na-H                     | NaH                               | 1,8873         | Al - Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $Al_2Br_6$                            | 2,33           |  |
| Na-Cl                    | NaCl                              | 2,51           | Al-J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Al_2J_6$                             | 2,53           |  |
| Na - Br                  | NaBr                              | 2,64           | Al-J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Al_2J_6$                             | 2,58           |  |
| Na-J                     | NaJ                               | 2,90           | Al-H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AlH                                   | 1,64822        |  |
| K - K                    | $K_2$                             | 3,923          | Ga-Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GaCl                                  | 2,208          |  |
| K-H                      | KH                                | 2,244          | Ga-Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $Ga_2Cl_6$                            | 2,22           |  |
| K - Cl                   | KCl                               | 2,79           | Ga - Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $Ga_2Br_6$                            | 2,34           |  |
| K - Br                   | KBr                               | 2,94           | Ga = J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $GaJ_3$                               | 2,50           |  |
| K-J                      | KJ                                | 3,23           | In - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $In(\mathring{C}H_3)_3$               | 2,16           |  |
| Rb - H                   | RbH                               | 2,367          | In-H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | InH                                   | 1,8376         |  |
| Rb - Cl                  | RbCl                              | 2,89           | In - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | InF                                   | 1,9847         |  |
| Rb-Br                    | RbBr                              | 3,06           | In-Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $In_2Cl_6$                            | 2,46           |  |
| Rb-J                     | RbJ                               | 3,26           | In - Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $In_2^2Br_6$                          | 2,58           |  |
| Cs - H                   | CsH                               | 2,494          | In - J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $In_2^2J_6$                           | 2,76           |  |
| Cs - Cl                  | CsCl                              | 3,06           | In - J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $InJ_3$                               | 2,86           |  |
| Cs - Br                  | CsBr                              | 3,14           | Tl-H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TlH                                   | 1,870          |  |
| $\mathit{Cs} = J$        | CsJ                               | 3,41           | $Tl = \overline{F}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TlF                                   | 2,0844         |  |
|                          |                                   | -,             | Tl - Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TlCl                                  | 2,4848         |  |
| Be-H                     | BeH                               | 1,3431         | Tl - Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TlBr                                  | 2,6181         |  |
| Mg-H                     | MgH                               | 1,7306         | Tl-J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TlJ                                   | 2,8136         |  |
| Ca - H                   | CaH                               | 2,002          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | <b>2,</b> 0100 |  |
| Sr - H                   | SrH                               | 2,1455         | C - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_2H_6$                              | 1,536          |  |
| Ba - H                   | BaH                               | 2,2318         | C - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Adamantan                             | 1,54           |  |
|                          |                                   | -,             | C - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Diamant                               | 1,54452        |  |
| B - C                    | $B(CH_3)_3$                       | 1,56           | C = C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Toluol                                | 1,52           |  |
| B-N                      | Borazol                           | 1,44           | C - Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $CH_3SiH_3$                           | 1,857          |  |
| B - N                    | $B_2H_7N$ a)                      | 1,50           | C-Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_6\ddot{H}_5Si\ddot{H}_3$           | 1,84           |  |
| B = 0                    | $C_{3}H_{9}B_{3}O_{3}\mathbf{b})$ | 1,39           | C - Ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(CH_3)_4Ge$                          | 1,98           |  |
| B - P                    | $C_6 H_{24} B_3 P_3 c$            | 1,94           | C - Sn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(CH_3)_4Sn$                          | 2,18           |  |
| B - H                    | BH 24-3-3-7                       | 1,2325         | C - Sn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $CH_3SnH_3$                           | 2,143          |  |
| B-H                      | $B_2H_6$                          | 1,187          | C - N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $CH_3NH_2$                            | 1,474          |  |
| B - Cl                   | $BCl_3$                           | 1,73           | C - N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(CH_3)_2NH$                          | 1,46           |  |
| B - Cl                   | $B_3N_3Cl_3H_3$ d)                | 1,78           | C - N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(CH_3)_3N$                           | 1,47           |  |
| B - Br                   | $BBr_3$                           | 1,87           | C - P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(CH_3)_3P$                           | 1,87           |  |
| $\tilde{B} - \tilde{B}r$ | $BBr^3$                           | 1,887          | C - As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(CH_3)_3As$                          | 1,98           |  |
| Al - Cl                  | AlCl                              | 2,138          | $\begin{array}{cccc} \ddot{c} & -\ddot{c} & \dot{c} $ | $CH_3OH$                              | 1,428          |  |
| Al - Cl                  | $Al_2Cl_6$                        | 2,06           | C = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(CH_3)_2O$                           | 1,42           |  |
|                          |                                   | <b>-</b> , ∨ ∨ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                |  |

Tabelle 2 (Fortsetzung)

| Tabelle 2 (Fortsetzung) |                        |          |                                     |                       |          |  |
|-------------------------|------------------------|----------|-------------------------------------|-----------------------|----------|--|
| Bindung                 | in                     | d (in Å) | Bindung                             | in                    | d (in Å) |  |
| C - S                   | $(CH_3)_2S$            | 1,82     | Ge - Br                             | $GeH_3Br$             | 2,298    |  |
| C — $Se$                | $(CH_3)_2$ Se          | 1,977    | Ge-J                                | $GeJ_a$               | 2,50     |  |
| C - H                   | $CH_{4}^{3/2}$         | 1,0910   | Sn-Cl                               | $SnCl_4$              | 2,30     |  |
| C - H                   | $C_2H_4$               | 1,07     | Sn-Cl                               | $CH_3SnCl_3$          | 2,32     |  |
| C - H                   | $C_{6}H_{6}^{2}$       | 1,084    | Sn-Cl                               | $(CH_3)_2SnCl_2$      | 2,34     |  |
| C - H                   | $C_{2}^{0}H_{2}^{0}$   | 1,0637   | Sn-Cl                               | $(CH_3)_3SnCl$        | 2,37     |  |
| C - F                   | $CF_4$                 | 1,323    | Sn - Br                             | $SnBr_{4}$            | 2,44     |  |
| C - F                   | $CH^{3}F_{3}$          | 1,332    | Sn - Br                             | $CH_3SnBr_3$          | 2,45     |  |
| C - F                   | $CH_2\mathring{F}_2$   | 1,358    | Sn - Br                             | $(CH_3)_2SnBr_2$      | 2,48     |  |
| C - F                   | $CH_3^2F^2$            | 1,385    | Sn - Br                             | $(CH_3)_3SnBr$        | 2,49     |  |
| C - F                   | $C_2 ec{F_4}$          | 1,313    | Sn-J                                | $SnJ_4$               | 2,64     |  |
| C - F                   | $CH_3COF$              | 1,37     | Sn-J                                | $CH_3SnJ_3$           | 2,68     |  |
| C - F                   | $C_2 H_5 F$            | 1,375    | Sn-J                                | $(CH_3)_2SnJ_2$       | 2,69     |  |
| C - Cl                  | $CCl_4$                | 1,766    | Sn-J                                | $(CH_3)_3SnJ$         | 2,72     |  |
| C - Cl                  | $CHCl_3$               | 1,767    | Sn-H                                | $SnH_4$               | 1,700    |  |
| C - Cl                  | $CH_2C\mathring{l}_2$  | 1,7724   |                                     | 107721                | 1,.00    |  |
| C - Cl                  | $CH_3Cl^2$             | 1,781    |                                     |                       |          |  |
| C - Cl                  | $C_2 C l_4$            | 1,72     | N = N                               | $N_2H_4$              | 1,47     |  |
| $C^{-}-Cl$              | $CH_3COCl$             | 1,77     | N = 0                               | $NH_2OH$              | 1,46     |  |
| C - Cl                  | $CH_{2}^{"}CHCl$       | 1,736    | N = OH                              | $HNO_3$               | 1,41     |  |
| C - Br                  | $CBr_{4}^{2}$          | 1,942    | N = OH                              | HNO,                  | 1,46     |  |
| C - Br                  | $CF_3Br$               | 1,908    | N-S                                 | $N_4S_4$              | 1,74     |  |
| C - Br                  | $CH^{\circ}Br_{3}$     | 1,930    | N-H                                 | $NH_3$                | 1,015    |  |
| C - Br                  | $CH_2Br_2$             | 1,907    | N-H                                 | $HN_3$                | 1,021    |  |
| C-J                     | $CJ_4$                 | 2,15     | N - H                               | NH NH                 | 1,038    |  |
| C $-J$                  | $CHJ_3$                | 2,12     | N - F                               | $NF_3$                | 1,371    |  |
| C - J                   | $CH_2\mathring{J}_2$   | 2,12     | $\stackrel{-}{N} - \stackrel{-}{F}$ | $NO_2^3F$             | 1,35     |  |
| C - J                   | $CH_3J^2$              | 2,139    | N - Cl                              | NHCl <sub>2</sub>     | 1,76     |  |
| C $-J$                  | $CH_{2}^{"}CHJ$        | 2,092    | N-Cl                                | $NH_2Cl$              | 1,77     |  |
| Si-Si                   | $Si_2H_6$              | 2,32     | N-Cl                                | $NO_2Cl$              | 1,794    |  |
| Si-N                    | $(SiH_3)_3N$           | 1,738    | P - P                               | P                     | 2,18     |  |
| Si-H                    | $SiH_4$                | 1,4798   | P - P                               | $\overline{P_4}$      | 2,21     |  |
| Si-H                    | $SiH_3^4F$             | 1,46     | P = 0                               | $P_4^4O_6$            | 1,65     |  |
| Si-H                    | $SiH\mathring{F}_3$    | 1,455    | P = 0                               | $P_{4}^{4O_{10}}$     | 1,62     |  |
| Si-H                    | $SiH_3\mathring{Cl}$   | 1,483    | P-S                                 | $P_{4}S_{10}$         | 2,085    |  |
| Si-Cl                   | $SiCl_{4}^{\prime}$    | 2,01     | P - H                               | $PH_3$                | 1,4206   |  |
| Si-Cl                   | $SiH\tilde{C}l_3$      | 2,021    | P - Cl                              | $PCl_3$               | 2,043    |  |
| Si-Cl                   | $SiH_2C\mathring{l}_2$ | 2,02     | P - Cl                              | $(PNCl_2)_3$          | 1,97     |  |
| Si-Cl                   | $SiH_3^{"}Cl^{"}$      | 2,0497   | P - Br                              | $PBr_3$               | 2,18     |  |
| Si - Br                 | $SiBr_4$               | 2,15     | P = J                               | $PJ_3$                | 2,43     |  |
| Si - Br                 | $SiHBr_3$              | 2,16     | As-As                               | $As_4$                | 2,44     |  |
| Si - Br                 | $SiH_3Br$              | 2,209    | As-O                                | $As_4^{\dagger}O_6$   | 1,78     |  |
| Si - Br                 | $SiBrF_3$              | 2,153    | As-S                                | $As_4S_6$             | 2,25     |  |
| Si-J                    | $SiJ_4$                | 2,43     | As-H                                | $AsH_3$               | 1,5192   |  |
| Si-J                    | $SiH_3J$               | 2,433    | As-F                                | $AsF_3$               | 1,712    |  |
| Ge-Ge                   | $Ge_2\mathring{H}_6$   | 2,41     | As-Cl                               | $AsC\mathring{l}_{3}$ | 2,161    |  |
| Ge - H                  | $GeH_4$                | 1,527    | As-Br                               | $AsBr_3$              | 2,33     |  |
| Ge - H                  | $GeH_3Cl$              | 1,52     | As-J                                | $AsJ_3$               | 2,55     |  |
| Ge - H                  | $GeHCl_3$              | 1,55     | Sb-H                                | $SbH_3$               | 1,7073   |  |
| Ge-Cl                   | $GeCl_4$               | 2,08     | Sb - Cl                             | $SbCl_3$              | 2,325    |  |
| $Ge\ -Cl$               | $GeHCl_3$              | 2,1139   | Sb - Br                             | $SbBr_3$              | 2,51     |  |
| Ge - Br                 | $GeBr_4$               | 2,29     | Sb-J                                | $SbJ_3$               | 2,67     |  |
|                         | · ·                    | 1        |                                     | 1                     |          |  |

| Bindung | in                | d (in Å) | Bindung | in             | d (in Å) |
|---------|-------------------|----------|---------|----------------|----------|
| 0 -0    | $H_2O_2$          | 1,49     | Te-F    | $TeF_6$        | 1,84     |
| O-H     | $H_2O^2$          | 0,9584   | Te-Cl   | $TeCl_2$       | 2,36     |
| O - H   | $H_2^2O_2$        | 0,97     | Te-Cl   | $TeCl_{4}^{2}$ | 2,33     |
| O - H   | $CH_3OH$          | 0,967    | Te - Br | $TeBr_{2}$     | 2,51     |
| O - F   | $OF_2$            | 1,418    |         |                | ,        |
| O - Cl  | $Cl_2O$           | 1,701    |         |                |          |
| O - S   | $F_5SOOSF_5$      | 1,66     | H - H   | $H_{2}$        | 0,7415   |
| S - S   | $S_8$             | 2,07     | H - F   | HF             | 0,9170   |
| S - S   | $H_2^{\circ}S_2$  | 2,05     | H - Cl  | HCl            | 1,27456  |
| S - H   | $H_2^{z}S^{z}$    | 1.3455   | H - Br  | HBr            | 1,41443  |
| S-H     | $CH_3SH$          | 1,3291   | H - J   | HJ             | 1,6165   |
| S - F   | $SF_6$            | 1,58     | F - F   | $F_2$          | 1,4177   |
| S - F   | $SOF_2$           | 1,585    | F - Cl  | ClF            | 1,6281   |
| S - F   | $SO_2\tilde{F}_2$ | 1,570    | F - Cl  | $ClF_{3}$      | 1,698    |
| S-Cl    | $SCl_2$           | 1,99     | F - Cl  | $ClF_3$        | 1,598    |
| S - Cl  | $SO\tilde{C}l_2$  | 2,07     | F - Br  | $Br 	ilde{F}$  | 1,7556   |
| S - Cl  | $SO_2C\hat{l}_2$  | 1,99     | Cl - Cl | $Cl_2$         | 1,988    |
| Se - Se | $Se_8$            | 2,32     | Cl - Br | BrCl           | 2,138    |
| Se-H    | $H_2$ Se          | 1,47     | Cl - J  | JCl            | 2,32070  |
| Se - F  | $SeF_{6}$         | 1,70     | Br - Br | $Br_2$         | 2,2836   |
| Se - F  | $SeF_{A}^{\circ}$ | 1,765    | J - J   | $J_2$          | 2,6666   |

Tabelle 2 (Fortsetzung)

besseren Wert, der jedoch bereits ein wenig größer ist als der empirische Kovalenzradius. Ähnlich verhält es sich bei Rb und Cs. Da bei den Alkalimetallen überdies nur wenige Meßdaten vorliegen und die betreffenden Bindungen beträchtlich von der idealen kovalenten Bindung abweichen, ist der erwähnten Diskrepanz unter Umständen keine Bedeutung beizumessen. Anders verhält es sich bei den Elementen Si, Ge, Sn, As, Sb, wo wir mit etwas höheren Elektronegativitäten rechnen, um gute Kovalenzradien zu bekommen. Verschiedene Autoren [2, 4, 6, 7, 9] sind der Ansicht, daß die von Pauling für diese Elemente angegebenen Werte zu klein sind. Die erste Spalte der Tab. 3 enthält die Paulingschen Elektronegativitäten

PAULING PRITCHARD U. SKINNER [9] Diese Arbeit Si ...... 1,8-1,91,8 1,9 Ge ...... 1,71,8-1,91,9 Sn ...... 1.7 1.8 - 1.91,9 As ...... 2,0 2,0 2,1 Sb ...... 1,9 1,8 2.0 1,6 1.7  $In \dots \dots \dots \dots \dots$ 1,5 1,6 1,4

Tabelle 3. Elektronegativitäten

der genannten Elemente, die zweite Spalte diejenigen Werte, welche PRITCHARD und SKINNER in ihrer zusammenfassenden Abhandlung über die Elektronegativitäten [9] als die besten bezeichnen, und die dritte Spalte schließlich die von uns verwendeten Werte. In den beiden letzten Spalten werden auch die Elemente Ga, In und Tl, für die Pauling keine Elektronegativitäten angibt, angeführt.

Aus Tab. 1 ist ersichtlich, daß die nach der Formel (2) berechneten Kovalenzradien  $r_{ber}$  gut mit den empirischen Kovalenzradien  $r_{emp}$  bzw.  $r_{Gau\beta}$  übereinstimmen. Eine größere Diskrepanz tritt nur beim Na auf. Hier fällt offenbar der Bindungsabstand im  $Na_2$ -Molekül, auf Grund dessen  $r_{emp}$  berechnet wurde, aus der Reihe. Zieht man nämlich die Abstände in den Natriumhalogenid-Gasmolekeln bzw. im NaH zur Berechnung des Kovalenzradius heran, so erhält man einen Wert, der mit dem nach Gl. (2) berechneten Radius  $r_{ber}$  gut übereinstimmt. Aus diesem Grund wurde auch der  $Na_2$ -Abstand bei der Berechnung der optimalen Kovalenzradien  $r_{Gau\beta}$  nicht berücksichtigt.

Die Kovalenzradien sind zunächst reine Rechengrößen. Es ist jedoch klar, daß diese mit der Elektronendichteverteilung insbesondere der Elektronen der Valenzschale eng zusammenhängen müssen. Eine rohe, aber dennoch recht gute Abschätzung der Aufenthaltswahrscheinlichkeiten der Elektronen wird durch die Slater-Atomorbitale gegeben. Die Aufenthaltswahrscheinlichkeit eines Elektrons im Abstand r ist gleich:

$$W = \int_{0}^{2\pi} \int_{0}^{\pi} \psi^* \psi \, r^2 \sin \vartheta \, d\vartheta \, d\varphi = \left(\frac{2Z'}{n'}\right)^{2n'+1} \cdot \frac{1}{\Gamma(2n'+1)} \, r^{2n'} \, e^{-\frac{2Z'}{n'} \, r} \, . \tag{5}$$

Z' ist die effektive Kernladungszahl nach Slater, n' ist die effektive Hauptquantenzahl. Es ist nun sehr naheliegend, Zusammenhänge zwischen den Ko-

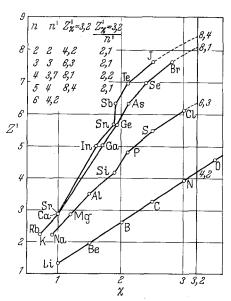
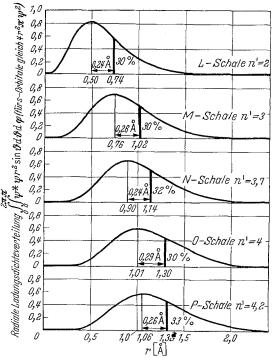



Fig. 2. Effektive Kernladungszahl Z' und Elektronegativität χ


valenzradien und den Slater-Atomorbitalen zu suchen. Von besonderem Interesse sind dabei die Schalenkonstanten  $\varrho$ , die als die Kovalenzradien der hypothetischen Elemente der Elektronegativität  $\chi=3,2$  aufgefaßt werden können. Wir bestimmten daher durch Interpolation bzw. Extrapolation die der Elektronegativität  $\chi=3,2$  entsprechenden effektiven Kernladungszahlen  $Z'_{\chi=3,2}$ , die in Fig. 2 angegeben sind\*.

In Fig. 3 sind die nach Gl. (5) berechneten radialen Ladungsdichteverteilungen für  $\chi=3,2$  dargestellt. Gleichzeitig sind auch die Schalenkonstanten  $\varrho$  eingetragen. Die Prozentzahlen in den einzelnen Diagrammen geben an, wieviel Ladung sich jeweils jenseits der Schalenkonstanten befindet, es sind in allen Fällen etwa 30%. Auch die Differenz zwischen dem Radius maximaler Aufent-

<sup>\*</sup> Es fällt auf, daß diese Werte  $Z_{\chi=3,2}$  proportional der effektiven Hauptquantenzahl n' sind. Der Orbitalexponent  $Z_{\chi=3,2}'n'$  ist also für die Atome der Elektronegativität  $\chi=3,2$  immer der gleiche. Daraus folgt, daß auch die Energie der Slaterorbitale für die Atome der Elektronegativität 3,2 unabhängig von der Hauptquantenzahl immer gleich groß ist. Sie beträgt in atomaren Einheiten —  $(Z'/n')^2/2$ .

haltswahrscheinlichkeit  $r_{max}$  und der Schalenkonstanten  $\varrho$  variiert nicht stark, sie beträgt immer ungefähr 1/4 Å.

In Fig. 4 sind sowohl die Kovalenzradien als auch die Abstände maximaler Aufenthaltswahrscheinlichkeit  $r_{max}$  der Elemente der ersten Achterperiode gegen die Elektronegativität aufgetragen. Für die übrigen Perioden sind die Kurven nur ein entsprechendes Stück nach oben verschoben zu denken. Der Übersichtlichkeit wegen sind diese Kurven jedoch nicht eingezeichnet. Die Kurve für die Kovalenzradien ist die schon besprochene kubische Parabel, die Abhängigkeit  $\operatorname{der} r_{max}$  von  $\operatorname{der} \operatorname{Elektronega}$ tivität wird durch eine gleichseitige Hyperbel\* dargestellt. Beide Kurven zeigen in dem uns interessierenden Gebiet denselben Verlauf, die Hyperbel ist jedoch wesentlich steiler. Und zwar aus folgendem Grund: Wenn wir von Elementen höherer Elektronegativität zu solchen niederer Elektronegativität gehen, so wird die Zahl der zur Abstoßung beitragenden Elektronen in der Valenzschale immer kleiner, was zur Folge hat, daß der Kovalenzradius bei abnehmender Elektronegativität nicht in dem Maß anwächst wie der Radius maximaler Ladungsdichte. Bei den Alkalimetallen schließlich werden die Abstoßungskräfte nur durch die Elektronen der nächstinneren Schale verursacht. In diesem Zusammenhang ist interessant, daß die nach Gl. (2) berechneten Kovalenzradien der Alkalimetalle durchweg um etwa 0,1 Å größer sind als die Van der



 ${\bf Fig.\,3.\,Radiale\,Ladungs dichteverteilung\,in\,Slater-Atomorbitalen}$ 

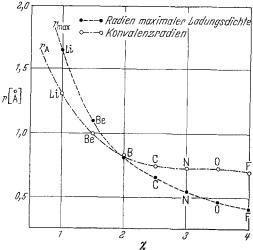



Fig. 4. Radien maximaler Ladungsdichte der Slater-Atomorbitale und Kovalenzradien als Funktion der Elektronegativität

 $<sup>\</sup>star$  Exakt stimmt das nur für die erste Periode (n=2), wo die effektive Kernladungszahl Z' streng proportional der Elektronegativität ist (vgl. Fig. 2); bei den höheren Perioden treten geringe Abweichungen von der gleichseitigen Hyperbel auf, die aber die grundsätzlichen Erwägungen nicht beeinflussen.

Waalsschen Radien der Edelgase mit der um eins kleineren Ordnungszahl, wie aus Tab. 4 hervorgeht.

| Edelgas                                            | TW aals      | Metall                                             | rcov              | Differenz    |
|----------------------------------------------------|--------------|----------------------------------------------------|-------------------|--------------|
| $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 1,22<br>1,60 | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 1,33<br>1,69      | 0,11<br>0,09 |
| Ar                                                 | 1,92         | K                                                  | 2,00              | 0,08         |
| $X \dots X$                                        | 1,98<br>2,18 | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | $2{,}16$ $2{,}29$ | 0,18<br>0,11 |

Tabelle 4. Kovalenzradien der Alkalimetalle und Edelgasradien (in Å):

Bei Elektronegativitäten über 3 wird die Kurve für die Kovalenzradien (siehe Fig. 1 und 4) praktisch horizontal. Um das zu erklären, betrachten wir die folgenden Bindungen:

$$Li-Li$$
  $-Be-Be B-B$   $C-C$   $\overline{N}-\overline{N}$   $\overline{O}-\overline{O}$   $\overline{F}-\overline{F}$ 

Beginnend mit der fünften Gruppe, in der ersten Reihe also vom Stickstoff an, werden einsame Elektronenpaare in die Valenzschale eingebaut. Diese tragen nun, da sie nicht durch ein drittes Atom von der betrachteten Bindung wegpolarisiert werden, in erhöhtem Maß zur Abstoßung bei, was dazu führt, daß der Kovalenzradius trotz Erhöhung der Elektronegativität nicht mehr abnimmt. Dieser Effekt ist aber nur in der ersten Periode ausgeprägt, denn in den höheren Perioden können auch d-Orbitale zur Hybridisierung mitbenützt werden, wodurch die Elektronen sozusagen mehr Ausweichmöglichkeiten besitzen. Unsere Formel (2) wird aber davon nicht mehr betroffen, da in diesen Reihen die Elektronegativitäten nicht den Wert 3 überschreiten; die nach Gl. (2) in Fig. 1 zu erwartenden Punkte fallen daher nicht mehr in den nahezu horizontalen Bereich der Kurven.

Die Schalenkonstanten  $\varrho$  hängen auch mit den Konstanten  $b_{ij}$  der von R. M. Badger [3] aufgestellten Beziehung (6) für die Kraftkonstanten einfach zusammen.

$$f^{\frac{1}{3}} = \frac{C}{d_0 - b_{ij}}. (6)$$

Diese Konstanten werden in Gl. (6) vom Gleichgewichtsabstand  $d_0$  als Korrektur für die Atomrümpfe abgezogen. Die  $b_{ij}$  sind nur von den Reihen im Periodensystem i und j, in denen die beiden an der Bindung beteiligten Atome stehen, abhängig. Sie sind außerdem annähernd additiv, können also als Summe von zwei, i bzw. j entsprechenden Rumpfradien  $s_i$  und  $s_j$  dargestellt werden. Wir fanden nun, daß  $b_{ij}$  ungefähr gleich der um 0,80 Å verminderten Summe der beiden i und j entsprechenden Schalenkonstanten ist,

$$b_{ij} = \varrho_i + \varrho_j - 0.80 \text{ Å}, \tag{7}$$

woraus folgt, daß die einer bestimmten Reihe i entsprechende Schalenkonstante  $\varrho_i$  immer um etwa 0,40 Å größer ist als der jeweilige Rumpfradius  $s_i$ . In Tab. 5 sieht man, daß Gl. (7) recht gut erfüllt ist.

Setzt man in Gl. (1) für die Kovalenzradien den Ausdruck (2) ein, so erhält man zur Berechnung der Länge  $d_{AB}$  (in Å) der zwischen den Atomen A und B bestehenden Einfachbindung die Formel

$$d_{AB} = \varrho_A + \varrho_B + 0.055 \left[ (3.2 - \chi_A)^3 + (3.2 - \chi_B)^3 \right] - 0.09 \left| \chi_A - \chi_B \right|, \tag{8}$$

| i              | j | Qi   | Qj   | bij, ber | $b_{ij}$ (nach Badger) |
|----------------|---|------|------|----------|------------------------|
| 1              | 1 | 0,74 | 0,74 | 0,68     | 0,68                   |
| 1              | 2 | 0,74 | 1,02 | 0,96     | 0,94                   |
| 1              | 3 | 0.74 | 1,14 | 1,08     | 1,06                   |
| 1              | 4 | 0,74 | 1,30 | 1,24     | 1,18                   |
| 1              | 5 | 0,74 | 1,32 | 1,26     | 1,26                   |
| 2              | 2 | 1,02 | 1,02 | 1,24     | 1,25                   |
| $^2$           | 3 | 1,02 | 1,14 | 1,36     | _                      |
| $\overline{2}$ | 4 | 1,02 | 1,30 | 1,52     | 1,48                   |
| $^2$           | 5 | 1,02 | 1,32 | 1,54     | _                      |
| 3              | 3 | 1,14 | 1,14 | 1,48     | 1,48                   |
| 3              | 4 | 1,14 | 1,30 | 1,64     | _                      |
| 3              | 5 | 1,14 | 1,32 | 1,66     |                        |
| 4              | 4 | 1,30 | 1,30 | 1,80     | 1,76                   |
| 4              | 5 | 1,30 | 1,32 | 1,82     | _                      |
| 5              | 5 | 1,32 | 1,32 | 1,84     | _                      |

Tabelle 5. Zusammenhang der Konstanten bij der Badger-Regel mit den Schalenkonstanten Q

 $b_{ij, ber} = \varrho_i + \varrho_j - 0.80$ 

in welcher nur Elektronegativitäten und Schalenkonstanten vorkommen.

Man kann umgekehrt Gl. (8) dazu benützen, um aus bekannten Bindungslängen Elektronegativitäten zu bestimmen. So lassen sich z. B. aus den Kohlenstoff-Wasserstoff-Bindungslängen für die verschiedenen Hybridisierungszustände des C-Atoms folgende Elektronegativitäten errechnen:

$$C(sp^3)$$
 2,45  
 $C(sp^2)$  2,6  
 $C(sp)$  2,7

Es können allerdings dazu kaum andere Bindungslängen als die von *C—H*-Bindungen herangezogen werden, weil es nicht möglich ist, die bei anderen Bindungen auftretenden konjugativen bzw. hyperkonjugativen Effekte sauber von den Elektronegativitätseffekten abzutrennen.

Eine andere Formel, die Kovalenzradien und Elektronegativitäten in Zusammenhang bringt, stammt von GORDY [5]:

$$\chi = 0.50 + 0.31 \frac{N+1}{r} \,. \tag{9}$$

Außer diesen beiden Größen kommt in Gl. (9) noch die Zahl der Elektronen der Valenzschale N vor. Dies ist auch der Grund dafür, daß die Formel (9) von Gordy mit unserer Gl. (2), die als dritte veränderliche Größe die Schalenkonstante  $\varrho$  enthält, nicht unmittelbar verglichen werden kann. Da, wie man sich leicht überzeugen kann, der aus Gl. (9) folgende Differentialquotient  $(dr/d\chi)_{N=konst.}$  stets größer ist als der aus Gl. (2) folgende  $(dr/d\chi)_{\varrho=konst.}$ , eignet sich Gl. (9) weniger gut zur Berechnung von Kovalenzradien aus Elektronegativitäten wie Gl. (2). Vielmehr hat Gordy seine Formel (9) zur Berechnung von Elektronegativitäten aus Kovalenzradien verwendet, wozu wiederum unsere Gl. (2) weniger geeignet erscheint. Die von Gordy nach Gl. (9) berechneten Elektronegativitäten stimmen recht gut mit den Werten Paulings überein.

Formeln, die der Gordyschen Gleichung (9) ähnlich sind, wurden von Liu [11] bzw. Allred und Rochow [1] angegeben.

Wir danken den Vorständen des Organisch-Chemischen und des Physikalisch-Chemischen Institutes der Universität Wien, den Herren Prof. Dr. F. Wessely und Prof. Dr. H. Nowotny, daß sie die Durchführung dieser Arbeit ermöglicht haben. Dem Vorstand des Institutes für Statistik der Universität Wien, Herrn Prof. Dr. S. Sagoroff, danken wir für die Benützung der elektronischen Rechenanlage.

## Literatur

- [1] ALLRED, A. L., and E. G. ROCHOW: J. inorg. nuclear Chem. 5, 264 (1958).
- [2] J. inorg. nuclear Chem. 5, 269 (1958).
- [3] BADGER, R. M.: J. chem. Physics 2, 128 (1934).
- [4] GORDY, W., and W. J. O. THOMAS: J. chem. Physics 24, 439 (1956).
- [5] Physic. Rev. 69, 604 (1946).
- [6] Huggins, M. L.: J. Amer. chem. Soc. 75, 4123 (1953).
- [7] LITTLE, Jr., E. J., and M. M. JONES: J. chem. Educ. 37, 231 (1960).
- [8] POLANSKY, O. E., u. G. DERFLINGER: Theoret. chim. Acta (Berl.) 1, 308 (1963).
- [9] PRITCHARD, H. O., and H. A. SKINNER: Chem. Rev. 55, 745 (1955).
- [10] SCHOMAKER, V., and D. P. STEVENSON: J. Amer. chem. Soc. 63, 37 (1941).
- [11] TSUN HSIE LIU: J. Chinese chem. Soc. 9, 119 (1942), kurz referiert von Pritchard, H. O., and H. A. SKINNER: Chem. Rev. 55, 761 (1955).
- [12] Tables of Interatomic Distances and Configuration in Molecules and Ions; The Chemical Society, London 1958.

(Eingegangen am 3. April 1963)